Synthetic Studies on the Validamycins. II. Synthesis of 1L-1-O-(β -D-Glucopyranosyl)-(1,3,4/2,6)-4-amino-6-hydroxymethyl-1,2,3-cyclohexanetriol¹⁾

Seiichiro Ogawa, Noritaka Chida, Hiroyuki Ito, and Tetsuo Suami*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223

(Received June 10, 1982)

The title β -D-glucopyranoside was synthesized via an unequivocal route and found to be identical with β -D-glucopyranosylvalidamine derived from antibiotic validamycin A. The position at which the validamine moiety is substituted with D-glucopyranose in validamycin A is revised to C-1 on the basis of the present synthesis.

In the preceding paper, 2) we described an unequivocal synthesis of the original structure of β -D-glucopyranosylvalidamine (1) and found that it was not identical with an authentic sample derived from validamycin A. These results suggested that, contrary to the previous assignment by Horii and Kameda,3) D-glucopyranose should be attached to the C-1 or C-3 hydroxyl group rather than to the C-2 hydroxyl group of 1L-(1,3,4/2,6)-4-amino-6-hydroxymethyl-1,2,3-cyclohexanetriol [(+)validamine] (2). Therefore, in order to elucidate the position of the β -glucosidic linkage, attempts were initially made to prepare the 1-O-β-D-glucopyranoside (3) via an unambiguous route. In the present paper, we wish to describe the detail of the successful synthesis of 3, identical with an authentic sample, and to discuss on the revised structure of validamycin A along with ¹³C NMR spectral data.

DL-7-O-Benzoyl-2, 3-O-isopropylidene-(1,3,4/2,6)-4-azido-6-hydroxymethyl-1,2,3-cyclohexanetriol (**8b**) was chosen as a protected precursor of the aglycone moiety for a condensation with 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide, and was prepared by starting from readily available DL-tri-O-acetyl-(1,3/2,4,6)-4-bromo-6-bromomethyl-1,2,3-cyclohexanetriol (**4**)⁴⁾ in the following sequence.

Treatment of **4** with refluxing aqueous ethanol containing 5% hydrobromic acid gave the trihydroxy compound (**5**) in 95% yield. Isopropylidenation of **5** with 2,2-dimethoxypropane in N,N-dimethylformamide (DMF) in the presence of p-toluenesulfonic acid at 60 °C for 2 h yielded a crystalline mixture of the 1,2-O-(**6a**) and 2,3-O-isopropylidene derivatives (**6b**) in 86% yield. Without separation, the mixture was directly treated with 2 molar equiv. of sodium benzoate in 90% aqueous DMF at 70 °C for 6 h to give through a preferential displacement of the 7-bromine atom a mixture of the benzoates (**7a** and **7b**). They were clearly separated, by chromatography on silica gel and later

$$R^3$$
 AcO R^2 R^2 R^3

Ac
Me
Me
Ac

Scheme 2. Synthesis of protected precursors of DL-validamine. All compounds are racemic. The formulas depict one of the respective enantiomers.

by fractional crystallization, to 7a and 7b in 8 and 35% yields, respectively. As one of side products, the olefin (11) was isolated in pure form, which was further characterized as the acetate (12). Compound 11 was also obtained from 7a in 12% yield by treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene in toluene, together with the epoxide (13, 33%). Azidolysis of 7a with sodium azide in dimethyl sulfoxide (DMSO) at 110 °C for 20 h afforded the azide (8a) and 11 in 64 and 4% yields, respectively. On the other hand, a similar treatment of 7b with an azide ion gave the azide (8b) selectively in 73% yield. No formation of any olefinic compound was observed in this case. The structures of 8a and 8b were confirmed by converting them into the corresponding O-acetyl (9a and 9b), and O-methyl derivatives (10a and 10b). Thus, in the ¹H NMR spectra, 9a and 9b showed a one-proton doublet of doublets (δ =5.05, J=4 and 10.5 Hz) and a one-proton triplet (δ =5.19, J=9 Hz) attributable to a proton attached to the carbon atom bearing the acetoxyl group, respectively, which indicated the location of the acetoxyl groups at C-3 in **9a** and at C-1 in **9b**. For further confirmation, both 8a and 8b were converted into penta-N,O-acetyl-DL-validamine (17) by the following sequence: O-deisopropylidenation, O-deacylation, catalytic reduction, and acetylation. Therefore, 8b was expected to be a suitable intermediate for the synthesis of the desired β -D-glucopyranoside (3). In addition, in order to furnish several reference compounds for assignment of the 13C NMR spectral data of the validamine derivatives, 10a and 10b were transformed into the peracetates of 4-O-methyl (16) and 2-O-methylvalidamine (14),5) respectively.

Condensation of **8b** with 2,3,4,6-tetra-O-acetyl-α-Dglucopyranosyl bromide was conducted in dry benzene in the presence of mercury(II) cyanide and anhydrous calcium sulfate at 70 °C for 50 h. Under these conditions, only β -D-glucopyranosides were expected to be obtainable. The mixture of products was roughly separated by chromatography on silica gel with 1:10 2-butanone-toluene as an eluent to give a syrupy mixture of condesation products [18(+) and 18(-)], showing a single spot in several solvent systems. Without further separation, it was O-deisopropylidenated by treatment with Amberlite IR-120B (H+) in ethanol at The dihydroxy ambient temperature overnight. compounds thus obtained could be fractionated by a silica-gel column with 2: 5 2-butanone-toluene to afford **19**(+), $[a]_D$ +27°, and **19**(-), $[a]_D$ -16°, in 18 and 13% yields, respectively, based on 8b used. Isopropylidenation of 19(+) and 19(-) in the usual way could regenerate crystalline 18(+) and 18(-) in pure forms, respectively. Judging from the optical rotations, 19(+)

Scheme 3. Synthesis of 4-O-(β -D-glucopyranosyl)validamine. The formulas depict one of the respective diastereomers.

was tentatively assigned as the β -D-glucopyranoside that contained the precursor of (+)-validamine as the aglycone moiety. O-Deacylation of 19(+) with methanolic sodium methoxide in methanol gave the hydroxy azide [20(+)], which was successively hydrogenated with 5% palladium on carbon in ethanol containing an excess of hydrochloric acid to give the amine hydrochloride [21(+)], $[a]_D +22^\circ (H_2O)$, as a homogeneous syrup in 94% overall yield. This compound was shown to be identical with an authentic sample of β -D-glucopyranosylvalidamine hydrochloride by comparison of chromatographic behavior (TLC on cellulose and silica gel) in several solvent systems. It was further characterized by conversion into the octa-N,O-acetyl derivative [22(+)], $[a]_D$ +16° (lit,3) $[a]_D$ +17.6°), whose IR (in chloroform) and ¹H NMR spectra were superimposable on those of an authentic sample. 6)

On the other hand, the diastereomeric amine hydrochloride 21(-) obtained similarly from 19(-) via the hydroxy azide [20(-)] showed spectral properties similar to those of 21(+); however, they were clearly differentiated from each other by TLC. Its octa-N,0-acetyl derivative [22(-)] has $[a]_D - 49^\circ$.

Table 1. ¹³C NMR chemical shifts of peracetates of validamine derivatives in CDCl₃

Compound	C-1	C-2	C-3	C-4	C-5	C-6	C-7	OMe
3-O-Me (14)	71.33	72.83	79.24	45.37	27.90	34.65	63.13	57.21
1- <i>0</i> -Me (16)	80.24	73.15	71.60	46.32	28.42	36.13	63.64	60.16
17	← —71.41, 71.63——→			46.78	28.43	35.21	63.16	
22 (+)		_		45.99	27.92	37.17	62.93	
2-O-β-D-Glc ²)	_			46.15	28.16	35.02	63.51	

A part of the ¹³C NMR spectral data of validamine derivatives were shown in Table 1. Assignment of the resonances was carried out by comparing the spectrum of the peracetyl derivative with those of the O-methyl derivatives. Substitution of the acetoxyl group by methoxyl group causes a downfield shift of the signals for a-carbon atom (8—9 ppm) and β -carbon atom (1-1.5 ppm).7) The signal for C-6 of octa-O-acetyl- $2-O-\beta-D$ -glucopyranosylvalidamine²⁾ appears at 35.02 ppm, indicative of the location of the acetoxyl group at C-1, whereas the C-6 of 22(+) resonates downfield at 37.02 ppm, suggesting that D-glucopyranose attaches to the \hat{C} -1 hydroxyl group by way of β -glucosidic linkage. These assumptions may be compatible with the result of the present synthesis.

Scheme 4. The revised structure of validamycin A.

On the basis of the synthetic studies and the ¹³C NMR spectral data, the structure of β -D-glucopyranosylvalidamine should be revised to 1L-1-O-(β -D-glucopyranosyl)-(1,3,4/2,6)-4-amino-6-hydroxymethyl-1,2,3-cyclohexanetriol. Accordingly, the structure of validamycin A was convincingly formulated as shown in Scheme 4.

Experimental

General Methods. The same method was used as described in the preceding paper.²⁾ ¹³C NMR spectra were determined on a Varian FT-80 spectrometer at 20 MHz. The resonance signals are expressed in ppm downfield from the signal of tetramethylsilane.

DL-(1,3/2,4,6)-4-Bromo-6-bromomethyl-1,2,3-cyclohexanetriol (5). A mixture of DL-1,2,3-tri-O-acetyl-(1,3/2,4,6)-4-bromo-6-bromomethyl-1,2,3-cyclohexanetriol (4)⁴⁾ (4 g) in ethanol (160 ml) containing 48% hydrobromic acid (20 ml) was refluxed for 4 h. The reaction mixture was concentrated, and the crystallized residue was triturated with water and filtered to give a practically pure 5 (2.7 g, 95%). Recrystallization from ethanol and water gave an analytically pure sample (2 g, 71%) as prisms: mp 153.5—154 °C.

Found: C, 27.76; H, 3.92; Br, 52.48%. Calcd for C_7H_{12} -Br₂O₃: C, 27.66; H, 3.98; Br, 52.57%.

DL-1,2-O- (6a) and DL-2,3-O-Isopropylidene-(1,3/2,4,6)-4-bromo-6-bromomethyl-1,2,3-cyclohexanetriol (6b). A mixture of 5 (2 g), N,N-dimethylformamide (DMF) (20 ml), and 2,2-dimethoxypropane (9 ml) was heated in the presence of p-toluenesulfonic acid (5 mg) at 70 °C for 2 h. After being cooled to room temperature, the reaction mixture was treated with Amberlite IRA-400 (OH⁻) (1.5 ml) and then concentrated. Recrystallization of the residue gave 6a and 6b (2 g, 88%) as a homogeneous crystalline mixture: mp 122-125 °C; they showed similar mobilities on TLC in several solvent

systems; ¹H NMR (CDCl₃) δ =1.42 (6H, s) and 1.48 (6H, s) (isopropylidene).

Found: C, 34.77; H, 4.60; Br, 46.69%. Calcd for $C_{10}H_{16}$ -Br₂O₃: C, 34.91; H, 4.69; Br, 46.45%.

DL-1,2-O- (7a) and DL-2,3-O-Isopropylidene-(1,3/2,4,6)-6benzoyloxymethyl-4-bromo-1,2,3-cyclohexanetriol (7b). line mixture of 6a and 6b (2g) was treated with sodium benzoate (1.7 g) in 90% aqueous DMF (40 ml) at 70-80 °C for 6 h. TLC showed the formation of two main components $(R_f \ 0.38 \ \text{and} \ 0.32, \ \text{developed twice in} \ 1:8 \ 2\text{-butanone-}$ toluene), together with several minor ones. The reaction mixture was then cooled to room temperature and diluted with ethyl acetate (50 ml), and an insoluble material was removed by filtration. The filtrate was concentrated, the residue was dissolved in chloroform, and the solution was passed through a short column of alumina. Evaporation of the solvent gave a syrupy residue, a small portion of which was fractionated on a silica-gel column with 1:8 2-butanonetoluene as an eluent to give pure crystals of 7a and 7b. The remaining syrup was dissolved in a small amount of ethanol and crystallization was induced by seeding in turn crystals of 7a and 7b. Compound 7b was first obtained as needles (0.78 g, 35%): mp 130—132 °C; ¹H NMR (CDCl₃) δ =1.48 (6H, s, isopropylidene), 4.34 (1H, dd, $J_{\text{gem}} = 11$ Hz, $J_{6,7} = 2$ Hz, H-7), 4.68 (1H, dd, $J_{6,7} = 4$ Hz, H-7'), and 7.33—8.15 (5H, m, phenyl). The second crop of crystals was **7a** (0.29 g, 13%) obtained as prisms: mp 125—127 °C; ¹H NMR (CDCl₃) $\delta =$ 1.44 (6H, s, isopropylidene), 4.21 (1H, dd, $J_{gem} = 11$ Hz, $J_{6,7} =$ 6 Hz, H-7), 4.58 (1H, dd, $J_{6,7}'=4$ Hz, H-7'), and 7.35—8.15 (5H, m, phenyl).

Found for **7a**: C, 52.78; H, 5.60; Br, 20.88%, and for **7b**: C, 53.12; H, 5.44; Br, 20.59%. Calcd for $C_{17}H_{21}BrO_5$: C, 53.00; H, 5.49; Br, 20.74%.

The mother liquor from **7a** and **7b** was concentrated and the residue was chromatographed on a silica-gel column with 1:10 2-butanone–toluene as an eluent. DL-2,3-O-Isopropylidene-(1,3/2,4)-4-benzoyloxymethyl-5-cyclohexene-1,2,3-triol (**11**) was purely obtained out of four minor products and recrystallized from ethanol to give prisms (20 mg): mp 105—107 °C; ¹H NMR (CDCl₃, 90 MHz) δ =1.43 (6H, s, isopropylidene), 2.43 (1H, broad d, OH), 2.58—3.01 (1H, m, H-4), 3.51 (1H dd) and 3.60 (1H, dd) (J=10 and 11 Hz, H-2 and H-3), 4.27 (1H, dd, J_{gem} =11 Hz, $J_{4.7}$ =6 Hz, H-7), 4.53 (1H, dd, $J_{4.7}$ '=5 Hz, H-7'), 5.67 (2H, s, H-5 and H-6), and 7.28—8.08 (5H, m, phenyl).

Found: C, 66.82; H, 6.53%. Calcd for $C_{17}H_{20}O_5$: C, 67.09; H, 6.62%.

Compound 11 (41 mg) was treated with acetic anhydride (1 ml) and pyridine (1 ml) at room temperature overnight. Concentration of the reaction mixture gave a crude product, which was crystallized from ethanol to give the acetate (12, 20 mg, 43%) as thin needles: mp 99.5—102.5 °C; ¹H NMR (CDCl₃, 90 MHz) δ =1.47 (6H, s, isopropylidene), 2.13 (3H, s, OAc), 2.77—3.06 (1H, m, H-4), 3.64 (1H, t, $J_{2.3}$ = $J_{3.4}$ =9 Hz, H-3), 3.82 (1H, t, $J_{1,2}$ =9 Hz, H-2), 4.33 (1H, dd, J_{gom} =11 Hz, $J_{4.7}$ =6 Hz, H-7), 4.59 (1H, dd, $J_{4.7}$ '=5 Hz, H-7'), 5.56 (1H, broad d, H-1), 5.73, (2H, broad d, H-5 and H-6), and 7.33—8.23 (5H, m, phenyl).

Found: C, 66.08; H, 6.53%. Calcd for $C_{19}H_{22}O_6$: C, 65.88; H, 6.40%.

DL-1,2-O-Isopropylidene-(1,3,4/2,6)-4-azido-6-benzoyloxymethyl-1,2,3-cyclohexanetriol (8a) and 11. A mixture of 7a (1.5 g), sodium azide (1 g), and dry dimethyl sulfoxide (30 ml) and heated at 110 °C for 20 h. TLC indicated the formation of two components ($R_{\rm f}$ 0.40 and 0.33, 1:5 2-butanone-toluene). Ethyl acetate (45 ml) was added to the reaction mixture and an insoluble material was removed by filtration. The filtrate

was successively washed with aqueous sodium chloride and water, and passed through a short column of alumina. The eluate was concentrated and the residue was chromatographed on a silica-gel column (75 g) with 1:10 2-butanone-toluene. The first fraction was concentrated to give crystals which were recrystallized from ethanol to give **8a** (0.89 g, 64%) as prisms: mp 118.5—121 °C; IR 3460 (OH), 2150 (N₃), and 1715 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ =1.45 (6H, s, isopropylidene), 2.92 (1H, broad s, OH), 3.24 (1H, dd, $J_{1,2}$ =10 Hz, $J_{1,6}$ =8 Hz, H-1), 3.75 (1H, t, $J_{2,3}$ =10 Hz, H-2), 4.26—4.70 (2H, m, H-7 and H-7'), and 7.33—8.16 (5H, m, phenyl).

Found: C, 58.54; H, 6.10; N, 11.85%. Calcd for $C_{17}H_{21}$ - $N_{2}O_{1}$: C, 58.78; H, 6.09; N, 12.10%.

Compound **8a** (35 mg) was acetylated as described for the preparation of **12**. The crude product was recrystallized from ethanol to give the acetate (**9a**, 25 mg, 64%) as prisms: mp 150—153 °C; ¹H NMR (CDCl₃) δ =1.43 (3H, s) and 1.47 (3H, s) (isopropylidene), 2.19 (3H, s, OAc), 3.34 (1H, dd, $J_{1,2}$ =8.5 Hz, $J_{1,6}$ =10.5 Hz, H-1), 3.95 (1H, dd, $J_{2,3}$ =10.5 Hz, H-2), 5.05 (1H, dd, $J_{3,4}$ =4 Hz, H-3), and 7.35—8.16 (5H, m, phenyl).

Found: C, 58.34; H, 6.02; N, 10.67%. Calcd for $C_{19}H_{23}-N_3O_6$: C, 58.60; H, 5.95; N, 10.79%.

The second fraction gave a syrup which crystallized from ethanol to give 11 (52 mg, 4.4%) as prisms, mp 103—105 °C, identical with the compound derived from 6a.

Reaction of 7a with 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU). A mixture of 7a (0.2 g), DBU (0.39 ml), and toluene (6 ml) was stirred at 120 °C for 7 h. TLC showed the formation of two major components (R_f 0.58 and 0.21) together with a trace of 7a (R_f 0.35, 1 : 5 2-butanone-toluene). The reaction mixture was concentrated and the products were fractionated on a silica-gel column (8 g) with 1 : 5 2-butanone-toluene as an eluent. The first fraction gave crystals, which were recrystallized from ethanol to give 1,2-anhydro-3,4-O-isopropylidene-(1,2,4/3,5)-5-benzoyloxymethyl-1,2,3,4-cyclohexanetetrol (13, 26 mg, 33%) as prisms: mp 87—89.5 °C; IR 1715 (C=O) and 1610 cm⁻¹ (phenyl); ¹H NMR (CDCl₃) δ =1.45 (6H, s, isopropylidene), 4.26 (1H, dd, J_{gem} =11 Hz, $J_{5,7}$ =5 Hz, H-7), 4.53 (1H, dd, $J_{5,7}$ '=4 Hz, H-7'), and 7.40—8.18 (5H, m, phenyl). Found: C, 66.81; H, 6.56%. Calcd for $C_{17}H_{20}O_5$: C, 67.09;

H, 6.62%.

The second fraction gave 11 (19 mg, 12%) mp 103—105 °C.

The second fraction gave **11** (19 mg, 12%) mp 103—105 °C, identical with the compound obtained from **6a**.

DL-2,3-O-Isopropylidene-(1,3,4/2,6)-4-azido-6-benzoyloxymethyl-1,2,3-cyclohexanetriol (8a). A mixture of 7b (1.1 g), sodium azide (0.75 g), and dimethyl sulfoxide (10 ml) was stirred at 120 °C for 18 h. The reaction mixture was processed as described for the preparation of 8a. The syrupy product was crystallized from ethanol to give 8b (0.72 g, 73%) as needles: mp 105—108 °C; IR 3480 (OH), 2170 (N₃), 1730 (C=O), and 1610 cm⁻¹ (phenyl); ¹H NMR (CDCl₃) δ =1.45 (3H, s) and 1.50 (3H, s) (isopropylidene), 3.31 (1H, m, OH), 3.52 (1H, dd, $J_{2,3}$ =9 Hz, $J_{3,4}$ =3 Hz, H-3), 3.67 (1H, dd, $J_{1,2}$ =9 Hz, $J_{1,6}$ =8 Hz, H-1), 4.03 (1H, t, H-2), 4.30 (1H, dd, J_{gem} =11 Hz, $J_{6,7}$ =2 Hz, H-7), 4.77 (1H, dd, $J_{6,7}$ '=4 Hz-H-7'), and 7.35—8.15 (5H, m, phenyl).

Found: C, 58.63; H, 6.11; N, 11.88%. Calcd for $C_{17}H_{21}$ - N_3O_5 : C, 58.78; H, 6.09; N, 12.10%.

Compound **8b** (50 mg) was acetylated in the usual way and the product was recrystallized from ethanol to give the acetate (**9b**, 30 mg, 54%) as needles: mp 116—119 °C; ¹H NMR (CDCl₃) δ =1.49 (6H, s, isopropylidene), 2.13 (3H, s, OAc), 3.63 (1H, dd, $J_{2,3}$ =9 Hz, $J_{3,4}$ =3 Hz, H-3), 4.09 (1H, t, $J_{1,2}$ =9 Hz, H-2), 5.19 (1H, t, $J_{1,6}$ =9 Hz, H-1), and 7.35—8.20 (5H, m, phenyl).

Found: C, 58.72; H, 5.98; N, 10.84%. Calcd for C₁₉H₂₃-

N₃O₆: C, 58.60; H, 5.95; N, 10.79%.

DL-1,2-O-Isopropylidene-3-O-methyl-(1,3,4/2,6)-4-azido-6-benzoyloxymethyl-1,2,3-cyclohexanetriol (10a). A mixture of 8a (0.3 g), methyl iodide (0.54 ml), and silver oxide (0.4 g) in dry DMF (3 ml) was stirred at room temperature for 20 h in the dark. Acetone (10 ml) was added to the reaction mixture and an insoluble material was removed by filtration. The filtrate was concentrated and the residue was coevaporated with 1butanol several times. The product was dissolved in ethyl acetate and the solution was passed through a short column of alumina. The eluate was concentrated and the residue was crystallized from ethanol to give 10a (0.13 g, 40%) as prisms: mp 82-85 °C; IR 2150 (N₃), 1720 (C=O), and 1610 cm⁻¹ (phenyl); ¹H NMR (CDCl₃) δ=1.42 (6H, s, isopropylidene), 3.20 (1H, dd, $J_{1,2}$ =9 Hz, $J_{1,6}$ =10 Hz, H-1), 3.49 (1H, dd, $J_{2,3}$ =10 Hz, $J_{3,4}$ =3 Hz, H-3), 3.52 (3H, s, methoxyl), 3.84 (1H, dd, H-2), 4.18 (1H, q, $J_{4.5 \text{ ax}} = J_{4.5 \text{ eq}} = 3 \text{ Hz}$, H-4), 4.22 (1H, dd, $J_{\text{gem}} = 11.5 \text{ Hz}$, $J_{6.7} = 5.5 \text{ Hz}$, H-7), 4.50 (1H, dd, $J_{6,7'}$ =4.5 Hz, H-7'), and 7.34—8.13 (5H, m, phenyl).

Found: C, 59.54; H, 6.33; N, 11.85%. Calcd for $C_{18}H_{23}$ - N_3O_5 : C, 59.80; H, 6.42; N, 11.63%.

DL-2,3-O-Isopropylidene-1-O-methyl-(1,3,4/2,6)-4-azido-6-benzoyloxymethyl-1,2,3-cyclohexanetriol (10b). A mixture of 8b (1 g), methyl iodide (1.8 ml), and silver oxide (1.3 g) in dry DMF (10 ml) was stirred at room temperature for 20 h in the dark. At this stage, TLC showed the presence of 9b. Then an additional amount of methyl iodide (0.9 ml) was added to the mixture and the stirring was continued for 23 h. The reaction mixture was processed as described for the preparation of 10a. The crude product was recrystallized from ethanol to give **10b** (0.33 g, 32%) as needles: mp 105—107 °C; IR 2140 (N₃), 1730 (C=O), and 1610 cm⁻¹ (phenyl); ¹H NMR (CDCl₃) δ 1.48 (3H, s) and 1.51 (3H, s) (isopropylidene), 3.32 (1H, t, $J_{1,2} = J_{1,6} = 9$ Hz, H-1), 3.52 (1H, dd, $J_{2,3} = 9$ Hz, $J_{3,4}$ = 3 Hz, H-3), 3.55 (3H, s, methoxyl), 4.03 (1H, t, H-2), 4.21 (1H,q, $J_{4.5ax} = J_{4.5eq} = 3$ Hz, H-4), 4.47 (2H, d, J = 3 Hz, H-7 and H-7'), and 7.35—8.13 (5H, m, phenyl).

Found: C, 59.82; H, 6.36; N, 11.39%. Calcd for $C_{18}H_{23}-N_3O_5$: C, 59.80; H, 6.42; N, 11.63%.

DL-1, 2, 7-Tri-O-acetyl-3-O-methyl-(1, 3, 4/2, 6)-4-acetamido-6hydroxymethyl-1,2,3-cyclohexanetriol (14). Compound 10a (0.1 g) was treated with Amberlite IR-120 (H+) (1.5 ml) in ethanol (8 ml) at room temperature for 3 h. TLC indicated the formation of a single product $(R_f, 0.15, 1:2]$ 2-butanonetoluene, $10a: R_f \ 0.77$). The resin was removed and the solution was concentrated to give a syrup which was treated with 0.3 M methanolic sodium methoxide(3 ml)(1 M=1 mol dm⁻³) at room temperature for 0.5 h. TLC showed the presence of a single product $(R_f \ 0.46, \ 5:1 \ \text{chloroform-methanol})$, the starting compound: R_f 0.78). The reaction mixture was neutralized with Amberlite IR-120 (H+) (1.5 ml) and then concentrated to give crystals (62 mg). A solution of it in methanol containing 1 M hydrochloric acid (3 ml) was hydrogenated in the presence of 5% palladium on carbon (15 mg) at room temperature for 16 h. The product showed a single spot (R_f 0.27) on TLC (4:1:1 1-propanol-acetic acidwater). The catalyst was removed by filtration and the filtrate was concentrated to give a crystalline 2-0-methyl-DLvalidamine hydrochloride (46 mg, 78%). An aqueous solution of the hydrochloride was treated with Amberlite IRA-400 (OH-) (1.5 ml) and then concentrated to a syrup, which was treated with acetic anhydride and pyridine in the usual way to give the total acetate. Recrystallization from ethanol gave 14 (22 mg, 22%) as prisms: mp 205.5—208 °C; IR 3350, 1645, and 1545 (amide), 1750 cm⁻¹ (ester); ¹H NMR (CDCl₃, 90 MHz) δ =2.00 (3H, s), 2.03 (6H, s), and 2.04 (3H, s) (NAc and OAc), 3.34 (3H, s, methoxyl), 3.35 (1H, dd, $J_{2,3}$ =9 Hz,

 $\begin{array}{l} J_{3,4}{=}5~{\rm Hz},~{\rm H}\text{--}7),~3.86~(1{\rm H},~{\rm dd},~J_{\rm gem}{=}11~{\rm Hz},~J_{6,7}{=}4~{\rm Hz},\\ {\rm H}\text{--}7),~4.14~(1{\rm H},{\rm dd},J_{6,7}{'}{=}5~{\rm Hz},{\rm H}\text{--}7'),~4.42~(1{\rm H},{\rm m},{\rm H}\text{--}4),~4.88\\ (1{\rm H},~{\rm t},~J_{1,2}{=}J_{1,6}{=}9~{\rm Hz},{\rm H}\text{--}1),~5.10~(1{\rm H},~{\rm t},~J_{2,3}{=}9~{\rm Hz},{\rm H}\text{--}2),\\ {\rm and}~5.87~(1{\rm H},~{\rm broad}~{\rm d},~J{=}6~{\rm Hz},~{\rm NH}). \end{array}$

Found: C, 53.21; H, 6.87; N, 3.72%. Calcd for $C_{16}H_{25}$ -NO₈: C, 53.47; H, 7.01; N, 3.90%.

DL-2,3,7-Tri-O-acetyl-1-O-methyl-(1,3,4/2,6)-4-azido-6-hydroxymethyl-1,2,3-cyclohexanetriol (15). Compound 10b (0.1 g) was treated with Amberlite IR-120 (H+) (1 ml) in ethanol, and the product was successively treated with 0.3 M methanolic sodium methoxide to give a crystalline hydroxy azide (56 mg, 93%). This compounds was acetylated in the usual way and the acetate was recrystallized from ethanol to give 15 (47 mg, 50%) as needles: mp 71—73 °C; IR 2130 (N₃) and 1740 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ =2.08 (9H, s, OAc), 3.15 (1H, dd, $J_{1,2}$ =9 Hz, $J_{1,6}$ =10.5 Hz, H-1), 3.38 (3H, s, methoxyl), 4.05 (1H, q, $J_{3,4}$ =J=4.5ax= $J_{4.5eq}$ =3 Hz, H-4), 4.13 (2H, d, J=4 Hz, H-7 and H-7'), 4.86 (1H, dd, $J_{2,3}$ =10 Hz, H-3), and 5.38 (1H, dd, H-2).

Found: C, 49.08; H, 6.13; N, 12.32%. Calcd for $C_{14}H_{21}$ - N_3O_7 : C, 48.95; H, 6.17; N, 12.24%.

DL-2,3,7-Tri-O-acetyl-I-O-methyl-(1,3,4/2,6)-4-acetamido-6-hydroxymethyl-1,2,3-cyclohexanetriol (16). Compound 15 (75 mg) was hydrogenated and then acetylated as described for the preparation of 14. The crude product was purified on a silica-gel column (5 g) with 1:1 2-butanone-toluene as an eluent to give 16 (60 mg, 76%) as a homogeneous solid: IR 3290, 1655, and 1550 (amide), and 1750 cm⁻¹ (ester); ¹H NMR (CDCl₃, 90 MHz) δ =2.00 (3H, s), 2.02 (3H, s), and 2.08 (6H, s) (NAc and OAc), 3.11 (1H, t, $J_{1,2}$ = $J_{1,6}$ =9 Hz, H-1), 3.41 (3H, s, methoxyl), 4.15 (2H, d, J=4 Hz, H-7 and H-7'), 4.48 (1H, m, H-4), 4.86 (1H, dd, $J_{2,3}$ =10 Hz, $J_{3,4}$ =5 Hz, H-3), 5.18 (1H, dd, $J_{1,2}$ =9 Hz, H-2), and 6.03 (1H, broad d, J=8 Hz, NH).

Found: C, 53.18; H, 6.85; N, 3.76%. Calcd for $C_{16}H_{25}$ -NO₈; C, 53.47; H, 7.01; N, 3.90%.

 $I_{L-}[19(+)]$ and $I_{D-}I-O-(2,3,4,6-Tetra-O-acetyl-\beta-D-gluco$ pyranosyl-1, 3, 4/2, 6-4-azido-6-benzoyloxymethyl1, -2, 3-cyclohexane-A mixture of **8b** (1.1 g), mercury(II) triol [19(-)]. cyanide (7 g), anhydrous calcium sulfate (Drierite) (7 g), and dry benzene (300 ml) was refluxed at 90 °C with stirring, and 140 ml of benzene was removed by distillation. Then freshly prepared 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (5.2 g) was added to the mixture and it was stirred vigorously at 65-70 °C for 50 h. After being cooled to room temperature, the reaction mixture was treated with triethylamine (3 ml) and an insoluble material was removed by filtration through a caoline bed and washed thoroughly with chloroform. The filtrate and washings were combined and concentrated to give a brown syrup, which was dissolved in ethyl acetate (180 ml), washed successively with aqueous sodium hydrogencarbonate $(3 \times 200 \text{ ml})$ and water $(2 \times 200 \text{ ml})$, and dried. Evaporation of the solvent gave a syrup (9.3 g) which was chromatographed on a silica-gel column (130 g) with 1:10 2-butanone-toluene as an eluent. Fractions having R_f 0.24 in the same solvent system (irrigated twice) were concentrated to give a pale yellow syrup (1.3 g), whose ¹H NMR spectrum showed the presence of one isopropylidene, four acetoxyl, and one benzoyloxyl groups, and a contamination of traces of unidentified side-products. A 1.3 g-portion of the syrup was dissolved in ethanol (10 ml) and treated with Amberlite IR-120B (H+) (20 ml) at room temperature for 21 h. The resin was filtered off and the filtrate was concentrated to a syrup (1.3 g), which was chromatographed on a silica-gel column (60 g) with 2:5 2butanone-toluene as an eluent. The main fraction $(R_f 0.41,$ 1:1 2-butanone-toluene) gave crystals 0.363 g (18%), which were recrystallized from ethanol to give 19(+) (0.262 g, 13%)

as needles: mp 182—183.5 °C; $[a]_{2}^{24}$ +27° (c 1.0, chloroform); IR 3540 (OH), 2150 (N₃), 1750 (C=O), and 1610 cm⁻¹ (phenyl); ¹H NMR (CDCl₃) δ =2.00 (3H, s), 2.04 (3H, s), 2.07 (3H, s), and 2.16 (3H, s) (OAc), and 7.35—8.13 (5H, m, phenyl).

The second fractions (R_f 0.34) were concentrated to give an amorphous solid (0.262 g, 13%), which was recrystallized from ethanol and ether to give $\mathbf{19}(-)$ (0.162 g, 8%) as needles: mp 158—161 °C; [a] $_{\mathbf{2}}^{\mathbf{23}}$ -16° (c 1.5, chloroform); IR 3500 (OH), 2150 (N₃), 1750 (C=O), and 1610 cm⁻¹ (phenyl); ¹H NMR (CDCl₃) δ =1.99 (3H, s), 2.0 2(3H, s), 2.10 (3H, s), and 2.17 (3H, s) (OAc), and 7.36—8.13 (5H, m, phenyl).

Found for 19(+): C, 52.84; H, 5.47; N, 6.32%, and for 19(-): C, 52.50; H, 5.51; N, 6.45%. Calcd for $C_{28}H_{35}NO_{14}$: C, 52.72; H, 5.54; N, 6.59%.

Preparation of the Isopropylidene Derivative 18(+) of 19(+). A mixture of 19(+) (50 mg), 2,2-dimethoxypropane (0.1 ml), DMF (2 ml), and p-toluenesulfonic acid (2 mg) was heated at 65—70 °C for 11 h. During this reaction time, 0.2 ml portions of 2,2-dimethoxypropane were added to the reaction mixture at intervals of 3 h. TLC showed one major spot (R_f 0.44) and one minor spot (R_f 0.09) due to 19(+) in 1:3 2-butanone-toluene. The mixture was treated with Amberlite IRA-400 (OH⁻) (1 ml) and then concentrated to a syrup ,which was chromatographed on a silica gel (2 g) with 1:3 2-butanone-toluene as an eluent. The main fraction gave a syrup, which crystallized from ethanol to give 18(+) (20 mg, 38%) as plates: mp 166-170 °C [α] $_{23}^{23}+21$ ° (ϵ 0.5, chloroform); $_{1}^{1}$ H NMR (CDCl $_{3}$) δ =1.48 (6H, broad s, isopropylidene), 1.92 (3H, s), 1.99 (3H, s), 2.02 (3H, s), and 2.06 (3H, s) (OAc), and 7.34—8.12 (5H, m, phenyl).

Found: C, 55.00; H, 5.90; N, 6.07%. Calcd for $C_{31}H_{39}$ - N_3O_{14} : C, 54.94; H, 5.80; N, 6.20%.

Preparation of the Isopropylidene Derivative 18(-) of 19(-). Compound 19(-) (50 mg) was O-isopropylidenated as described for the preparation of 18(+) to give 18(-) (49 mg, 92%) as a homogeneous solid, which crystallized from ethanol to give needles (29 mg, 56%): mp 174—174.5 °C; $[a]_2^{23} - 26^\circ$ (c 0.58, chloroform): ¹H NMR (CDCl₃) δ =1.48 (6H, broad s, isopropylidene), 1.99 (6H, s), 2.01 (3H, s), and 2.08 (3H, s) (OAc), and 7.32—8.12 (5H, m, phenyl).

Found: C, 55.16; H, 5.91; N, 6.10%. Calcd for $C_{31}H_{39}$ - N_3O_{14} : C, 54.94; H, 5.80; N, 6.20%.

Both 18(+) and 18(-) had similar mobilities on TLC (R_t 0.44, 1:3 2-butanone-toluene).

 $1L-1-O-(\beta-D-Glucopyranosyl)-(1,3,4/2,6)-4$ -amino-6-hydroxymethyl-1,2,3-cyclohexanetriol Hydrochloride [21(+)]. solution of 19(+) (100 mg) in methanol (5 ml) was added 1 M methanolic sodium methoxide (8 ml) and the mixture was kept at room temperature for 24 h. The reaction mixture was treated with Amberlite IR-120B (H+) (12 ml) and then concentrated to give the hydroxy azide 20(+) (61 mg) as a homogeneous syrup $(R_f \ 0.61, \ 4:1:1 \ 1$ -propanol-acetic acid-water). This compound was directly hydrogenated in a mixture of methanol (4 ml) and water (4 ml) containing 0.5 M hydrochloric acid (0.38 ml) in the presence of 5% palladium on carbon (10 mg) at room temperature overnight. The catalyst was removed by filtration and the filtrate was concentrated to give **21**(+) [56 mg, 94% yield based on **19**(+)] as a syrup, $[a]_D^{23}$ +22° (c 1.9, water). This compound was identical with an authentic sample derived from validamycin A, as found from comparison of the mobilities on TLC: silica gel, R_f 0.24 in 4:1:1 1-propanol-acetic acid-water and R_f 0.35 in 4:5:2:4 1-butanol-ethanol-acetic acid-water; cellulose, R_{t} 0.15 in 6:4:3:1 1-butanol-pyridine-water-acetic acid (ref. validamine hydrochloride, R. 0.17).

 $1-D-O-(\beta-D-Glucopyranosyl)-(1,3,4/2,6)-4$ -amino-6-hydroxy-

methyl-1,2,3-cyclohexanetriol Hydrochloride [21(-)]. Compound 19(-) (100 mg) was O-deacylated with methanolic sodium methoxide as described for the preparation of 20(+). The hydroxy azide 20(-) (64 mg) thus obtained was hydrogenated similarly to give 21(-) [53 mg, 88% yield based on 19(-)] as a syrup, which was clearly differentiated from 21(+) on TLC, showing mobilities slightly higher than those of 21(+) in all the solvent systems examined; silica gel, R_t 0.28 in 4:1:1 1-propanol-acetic acid-water and R_t 0.40 in 4:5:2:4 1-butanol-ethanol-acetic acid-water; cellulose, R_t 1.18 in 6:4:3:1 1-butanol-pyridine-water-acetic acid when 21(+) was used as an reference (R_t 1.0).

1L-1, 2, 3, 6-Tetra-O-acetyl-1-O-(2, 3, 4, 6-tetra-O-acetyl- β -Dglucopyranosyl) - (1, 3, 4/2, 6) - 4 - acetamido - 6 - hydroxymethyl - 1, 2, 3 cyclohexanetriol [22(+)]. Compound 21(+) (50 mg) was dissolved in water (5 ml) and treated with Amberlite IRA-400 (OH-) (1.5 ml) at room temperature for 30 min. The resin was removed by filtration and the filtrate was dried by azeotropic distillation with ethanol and toluene. The residual free base was treated with acetic anhydride (2 ml) and pyridine (2 ml) at 50 °C for 20 h. The reaction mixture was concentrated and the residue was chromatographed on a silica-gel column (4 g) with 1:1 2-butanone-toluene as an eluent. The fraction having R_{ϵ} 0.43 in 20:1 chloroform-methanol was concentrated to give 22(+) (50 mg, 57%) as an amorphous solid: $[a]_{D}^{23} + 16^{\circ}$ (c 0.75, chloroform) [lit,3] $[a]_{D}^{23} + 17.6^{\circ}$ (chloroform)]; IR (CHCl₃) 3440 (NH), 1770—1740 (C=O), 1680, and 1520 cm⁻¹ (amide); ¹H NMR (CDCl₃) $\delta = 1.98$ (3H, s), 2.00 (6H, s), 2.02 (9H, s), 2.07 (3H, s), and 2.10 (3H, s) (NAc and OAc), and 6.30 (1H, d, J=7 Hz, NH). The spectrum was superimposable on that of an authentic sample. 6)

Found: C, 51.30; H, 6.19; N, 2.20%. Calcd for C₂₉H₄₁-NO₁₇: C, 51.56; H, 6.12; N, 2.07%.

Compound 22(+) showed a double melting point. Thus, the amorphous solid melted at 114—118 °C (lit,3) 117—119 °C) and the melt, on continuous heating on a hot stage, crystallized at 150—160 °C to give needles, which melted sharply at 187—189 °C. The same melting and crystallization behavior was observed for an authentic sample (mp 112—119 and 183—185 °C).

 $1_{D-1}, 2, 3, 6$ -Tetra-O-acetyl-1-O-(2, 3, 4, 6-tetra-O-acetyl- β -D-

glucopyranosyl)|-(1,3,4/2,6)-4-acetamido-6-hydroxymethyl-1,2,3-cyclohexanetriol [22(-)]. Amine hydrochloride 21(-) (53 mg) was acetylated as described for the preparation of 22 (+) to give 22(-) (41 mg,44%) as a homogeneous syrup ($R_{\rm f}$ 0.51, 20 : 1 chloroform-methanol): $[a]_{\rm b}^{24}$ - 49° (c 0.75, chloroform); IR (CHCl₃) 3440 (NH), 1740—1765 (C=O), 1680, and 1505 cm⁻¹ (amide); ¹H NMR (CDCl₃) δ =1.99 (3H, s), 2.01 (6H, s), 2.02 (6H, s), 2.11 (3H, s), and 2.17 (6H, s) (NAc and OAc), and 6.06 (1H, broad d, J=7 Hz, NH).

Found: C, 51.48; H, 6.15; N, 1.93%. Calcd for $C_{29}H_{41}$ -NO₁₇: C, 51.56; H, 6.12; N, 2.07%.

The present work was partially supported by a Grant-in-Aid for Scientific Research No. 355376 from the Ministry of Education, Science and Culture. The authors wish to express their sincere thanks to Mr. Saburo Nakada for his elemental analyses.

References

- 1) A preliminary account of portions of this article was previously presented: S. Ogawa, N. Chida, and T. Suami, *Chem. Lett.*, **1980**, 139.
- 2) S. Ogawa, Y. Shibata, N. Chida, and T. Suami, *Bull. Chem. Soc. Jpn.*, **56**, 494 (1983).
- 3) S. Horii and Y. Kameda, J. Chem. Soc., Chem. Commun., 1972, 747.
- 4) S. Ogawa, K. Nakamoto, M. Takahara, Y. Tanno, N. Chida, and T. Suami, *Bull. Chem. Soc. Jpn.*, **52**, 1174 (1979). The nomenclature and numbering of cyclitols used in this paper follow IUPAC and IUB Tentative Rules for Cyclitol Nomenclature [*J. Biol. Chem.*, **243**, 5809 (1968)].
- 5) The absolute configuration of (+)-validamine was established by X-ray spectroscopic analysis of its hydrobromide and it was named 1S-(1,2,4/3,5)-1-amino-5-hydroxymethyl-2,3,4-cyclohexanetriol in the original paper [K. Kamiya, Y. Wada, S. Horii, and M. Nishikawa, J. Antibiot., 22, 317 (1971)]
- 6) An authentic sample of **22**(+) was kindly provided by Dr. Satoshi Horii (Takeda Chemical Industries, Ltd., Osaka).
- 7) J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York and London (1972), pp 458—462.